2019-01-28T10:03:29+00:00

2 Using the descriptive statistics data determined during Week One`s weekly problem discussion, the mean for EI followed a standard distribution with a mean of 132.83 and a standard deviation of 15.68. If we selected another random sample of 50 participan

This paper concentrates on the primary theme of 2 Using the descriptive statistics data determined during Week One`s weekly problem discussion, the mean for EI followed a standard distribution with a mean of 132.83 and a standard deviation of 15.68. If we selected another random sample of 50 participan in which you have to explain and evaluate its intricate aspects in detail. In addition to this, this paper has been reviewed and purchased by most of the students hence; it has been rated 4.8 points on the scale of 5 points. Besides, the price of this paper starts from £ 79. For more details and full access to the paper, please refer to the site.

Normal Probability

See attached file and please solve calculations in red.

2 Using the descriptive statistics data determined during Week One`s weekly problem
discussion, the mean for EI followed a standard distribution with a mean of 132.83 and a
standard deviation of 15.68. If we selected another random sample of 50 participants,

a What is the likelihood of selecting a sample with a mean EI score of at least 134?
b What is the likelihood of selecting a sample with a mean EI score of more than 128?
c What is the likelihood of selecting a sample with a mean EI score of more than 128 but less than 134?

Please show likelihood as a decimal with two decimal places.

μ = 132.83, σ = 15.68, n = 50, z = (x-bar - μ)÷(σ÷√n)

a z = (134 - 132.83)÷(15.68÷√50) = 0.5276 0.5276
P(x-bar ≥ 134) = P(z > 0.5276) = 0.30

b z = (128 - 132.83)÷(15.68÷√50) = -2.178 -2.178
P(x-bar > 128) = P(z > 0.5276) = 0.99

c P(128 < x-bar < 134) = P(-2.178 < z < 0.5276) = 0.69

Formula is on page 282

3 The mean Verbal SAT score for Division I student-athletes is 523 with a standard deviation of
103. If you select a random sample of 60 of these students, what is the probability the mean is
below 300? Above 450?

μ = 523, σ = 103, n = 60, z = (x-bar - μ)÷(σ÷√n)

z = (300 - 523)÷(103÷√60) = -16.7704 -16.77039391
P(x-bar < 300) = P(z < -16.7704) = 0

z = (450 - 523)÷(103÷√60) = -5.4899 -5.4899
P(x-bar > 450) = P(z > -5.4899) = 1.00

Formula is on page 282


100% Plagiarism Free & Custom Written,
Tailored to your instructions


International House, 12 Constance Street, London, United Kingdom,
E16 2DQ

UK Registered Company # 11483120


100% Pass Guarantee

Order Now

STILL NOT CONVINCED?

We've produced some samples of what you can expect from our Academic Writing Service - these are created by our writers to show you the kind of high-quality work you'll receive. Take a look for yourself!

View Our Samples

FLAT 50% OFF ON EVERY ORDER.Use "FLAT50" as your promo code during checkout